Asian J Beauty Cosmetol. 2013; 11(1): 77-83.
Cytotoxicity and Protective Effects of Smilax china L. Extract on Melanogenesis by FeSO4, an Autooxidant of Melanin Formation
Ae-Ja Pyo, Mi-Young Yoon, and Hyun-Ok Yang
ABSTRACT
To evaluate the cytotoxicity and protective effect of Smilax china L. (SC) extract on ferrous sulfate (FeSO4), an autooxidant of melanin formation, cell viability were analysed by XTT assay after human skin melanoma cells (SK-MEL-3) were cultured in media containing various concentrations of FeSO4. And also, the effect of antioxidant α-tocopherol on FeSO4-induced cytotoxicity was assessed. For the protective effect of SC extract on FeSO4-induced cytotoxicity, SK-MEL-3 cells were pretreated with 50 or 80 μg/㎖ of SC extract for 2 h before the treatment of FeSO4. And also, the antioxidative effects of SC extract were assessed by latate dehydrogenase (LDH) activity. In this study, FeSO4 remarkably decreased cell viability dose-dependent manner compared with control. And the XTT50 value was determined at 62.0 μM of FeSO4. In the effect of antioxidant, α-tocopherol effectively prevented FeSO4-induced cytotoxicity by the significant increase of cell viability. In the protective effect of SC extract on FeSO4-induced cytotoxicity, SC extract remarkably increased cell viability which was decreased by FeSO4-induced cytotoxicity, and also it showed the antioxidative effects such as a significant decrease of LDH activity. In the melanin generation, SC extract effectively blocked melanin generation by the decrease of tyrosinase activity and total amount of melanin. From these results, it is suggested that the cytotoxicity of FeSO4 was involved in oxidative stress, and also, SC extract effectively prevented the cytotoxicity and melanogenesis induced by an autooxidant of melanin formation, FeSO4 through antioxidative effect. Conclusively, SC extract may be a putative resources as an protective agent for oxidative stress-mediated skin hyperpigmentation via hyperactivity of autooxidant in melanin formation.
Keywords : Lactate dehydrogenase activity, Antioxidative effect, Hyperpigmentation